Instrument Study Sheet

Requirements	Logging
 3rd Class Medical or Above 50 Hours PIC Cross Country 40 Hours Simulated or Actual Instrument Time 15 Hours of Instrument Training with a CFII 3 Hours of Instrument Training within 2 Calendar Months of the Checkride One Instrument Cross Country Training Flight of at Least 250nm with an Approach at Each Airport and Three Different Kinds of Approaches 	 Up to 20 hours can be logged in an Advanced Aviation Training Device (AATD). Can be used for currency A person can log instrument time when operating solely by reference to instrument in simulated or actual conditions Safety pilots can log total time when the PIC is flying under instrument, but they cannot log cross country time

Acronyms				
Required Equipment	Instrument Currency	Route Clearance	Illusions in Flight	Lost Comm Procedures
FAR §91.205	FAR §61.57			Route
G: Generator/Alternator	6: Instrument Approaches	C: Clearance Limit	I: Inversion	A: Assigned
R: Radios	6: Calendar Months	R: Routing	C: Coriolis	V: Vectored
A: Altimeter (Sensitive)	H: Holding	A: Altitude	E: Elevator	E: Expected
B: Ball (Slip/Skid Indicator)	I: Intercepting	F: Frequency (Departure)	F: False Horizon	F: Filed
C: Clock (Hours & Mins.)	T: Tracking	T: Transponder Code	L: Leans	Altitude (highest of)
A: Attitude Indicator			A: Autokinesis	M: Minimum IFR Altitude
R: Rate of Turn Indicator			G: Graveyard Spin/Spiral	E: Expected Altitude
D: Direction Gyro/Heading			S: Somatogravic	A: Assigned Altitude

MEA: Minimum Enroute Altitude: Ensures navigation signal strong enough for reception and guarentees <u>obstacle clearance of at least 1,000</u> <u>feet and 2,000 feet in designated mountainous areas</u>. Communication is not necessarily guarenteed.

MEA GAP: If navigation signal cannot be assured on the MEA, and MEA gap will be charted

MOCA: Minimum Obstacle Clearance Altitude: Provides same obstacle clearance as MEA, navigation signal only guarenteed within 22nm of cloesest route-defining NAVAID. Has * next to altitude on chart. *See above*

MRA: Minimum Reception Altitude: Lowest altitude where an intersection can be identified by an off course NAVAID

MCA: Minimum Crososing Altitude: Charted when a higher MEA route segment is approached. Pilot must climb to reach MCA by the time of crossing the intersection

MAA: Maximum Authorized Altitude: Highest altitude that an airway can be flown and adequate reception is assured. Has MAA-Altitude on chart

MVA: Minimum Vectoring Altitude: Lowest altitude a controller can approve within a sector. Not information published to pilots. OROCA: Off-Route Obstruction Clearance Altitude: Provides obstacle clearance of 1,000 feet and 2,000 feet in designated mountainous areas. Similar to VFR Maximum Elevation Figures

IFR Alternate Rules Do you need to file an alternate? Alternate Minimums: airport must Nonstandard Alternate Α Minimums that do not follow Not if the weather at the destination have weather at least: is and is forecasted to be at least: 800-2 or 600-2. Check TPP for info Precision Approach: 600ft ceiling, 3: 3sm visibility or greater 2sm visibility 2: 2,000 ft ceiling or great Non-Precision Approach: 800ft Airport cannot be used as **A**NA alternate 1: 1 hour before and 1 hour after ETA ceiling, 2sm visibility

IFR Minimum Fuel Requirements

You must have enough fuel to:

Fly from departure to destination \rightarrow Fly from destination to alternate \rightarrow Fly 45 Extra Minutes at Cruise Speed

VOR Test: Must be Completed Every 30 Days! IFH: 9-16								
Location of VOR Test Poi	nts are specifie	ed in the AFD/	Chart Supplement.	A VOR	chec	k must	t have	a log entry by the
pilot that includes:					MAR	YLAND		
P: Place of Check				VOR	RECEIVE	Type	POINTS	
A: Amount of Error	Chart Supple	ement Entry				Check Pt.	Azimuth from	Dist. from
D: Date of Check	-	}	Facility Name (Arpt Name)	F	req/Ident	AB/ALT	Mag	N.M. Checkpoint Description
S: Signature			Frederick (Frederick Muni)	109.	0/FDK	G	035	0.6 On runup pad apch end Rwy 23.
				109.	0/FDK	G	359	0.6 Intersection Twy B and Twy C.
Ground Checkpoints		Airborne Che	eckpoint		VOT	-		
Ground checkpoints are	points on an	nts on an Visual landmarks will be specified in		VOR	R Test I	Facility	/ (VOT) transmits a	
airport with a yellow circle and an cha		chart supplement. Tune to VOR and		signal for pilots to perform VOR test				
arrow. Tune to the VOR and center center		center needl	center needle when over visual		on g	ground	l. The	VOT transmits the
the needle. The needle should be landmark. Th		idmark. The needle should be 360° radial in all directions.		directions. Tune to				
centered on the radial specified for centered on radial specified for the		108	.0 ther	n cente	er the VOR needle.			
the checkpoint in the cha	art	checkpoint ir	n the chart supplem	nent.	The VOR should read 0° FROM and			
supplement.		You can mak	e your own airborn	e	180	° TO.		
checkpoint along a victor air specifying a visual landmark the airway and testing the ra		checkpoint along a victor airway by						
		specifying a visual landmark along						
		nd testing the radia	l of					
		the airway.	-					
Accuracy: +/- 4°		Accuracy: +/-	- 6°		Accu	uracy:	+/- 4°	

Required Inspections for IFR Flight		
VOR Receiver Check	Every 30 Days	By Pilot
Annual Inspection	Every 12 Calendar Months	By an A&P Mechanic w/ IA
Transponder Inspection	Every 24 Calendar Months	By an A&P Mechanic
GPS Database	Variable, NAV Data Every 28 Days	Updated by pilot/operator
Pitot-Static Inspection	Every 24 Calendar Months	By an A&P Mechanic
100 Hour (If used for flight training)	Every 100 Hours Tach Time	By an A&P Mechanic

IFR Cruising Altitudes		ODD THOUSANDS (EAST)
0-179 Magnetic	Odd thousands	
180-359 Magnetic	Even thousands	EVEN THOUSANDS (WEST)

Types of Approaches				
Non-Precision: N	1DA – Minimum Descent Altitude	Precision: DA/DH – Decision Altitude/Height		
VOR-Approach	Uses VOR as approach NAVAID	LPV RNAV Approach	WAAS required	
Localizer (LOC)	Uses just the horizontal (left/right) component of an ILS	ILS Approach	Glideslope provides both horizontal (left/right) and vertical (up/down) guidance.	
LNAV RNAV	Lateral navigation with a GPS only gives horizontal guidance. It is almost like the GPS equivalent of a localizer	Precision Approach Radar	Approach control can vector you down and right/left	
Charted Visual Approaches	May be used at towered airports for efficiency. Depicts prominent landmarks to specific runways.	GLS Approach	GBAS Landing System: GBAS: Ground based augmentation system. Augments GPS signals for accuracy	

Approach Category	Speed Classification	Circling Radius (miles)	Example Aircraft
Category A	<90 KIAS	1.3	Cessna 172
Category B	91-120 KIAS	1.5	Piper Aztec
Category C	121-140 KIAS	1.7	Airbus a320
Category D	141-165 KIAS	2.3	Boeing 787
Category E	>165 KIAS	4.5	Lockheed C5

Elements of GPS			
Space Element	30 Satellites are all positioned so that 5 satellites a	are in view at all times	
Control Element	Consists of ground-based GPS monitoring and control stations		
	 Hawaii Colorado Springs, CO Cape Canaveral, FL Diego Garcia, Pacific Ocean Kwajalein Island, Pacific Ocean 3 ground antennas Cape Canaveral, FL Ascension Island, Atlantic Ocean Kwajalein Island, Pacific Ocean I master control station Colorado Springs, CO 	Auster Control Station Ground Antenna Air Force Monitor Station	
User Element	 Antennas on aircraft Receiver/processors on aircraft 		

vice Volume			
		Minimum Operational Net	work Volume
Low	High	Low	High
40nm	40nm to 14,500'	40nm to 5,000'	40nm to 5,000'
40NM	100NM 130NM 130NM 100NM 100NM 100NM 14500'	70nm to 18,000' 70NM 40NM	70nm to 14,500' 6000' ATH 100NM 130NM 100NM 100NM 14500' 14500' 14500'
	vice Volume Low 40nm	Vice Volume Low High 40nm 40nm to 14,500' 40NM 5000' ATH 100NM 5000' ATH 100NM 100N' 18000' 100NM 100' 18000' 100NM 100' 18000' 100NM 100' 18000'	Vice Volume Low High Low 40nm 40nm to 14,500' 40nm 1014,500' 40nm to 14,500' 100NM 100NM 1000' 100NM 100' 100NM 100'

GPS CDI Deflection

When using GPS for navigation, full deflection indicated Enroute: 2nm from course centerline Terminal: 1nm from course centerline Past Final Approach Fix: .3nm from course centerline

Structural Icing (not to be confused with induction or carburetor icing)					
Supercooled water: Supercooled water is water suspended in the air that is not frozen					
but will freeze	but will freeze when it comes in contact with a surface. Strikes the edge of airfoil and				
freezes immed	freezes immediately				
Droplet Sizes:					
Cumule	us: Large drops			Freque	
Stratus	: Small drops				
High Cl	ouds: Ice Crystals				
Conditions req	uired for icing, most icin	g occurs between +2 and -20)°C:	0 Filme Mixed Clear	
1. Visible	moisture			Icing Type Frequency of Occurrence Modified from Omeron Bernstein	
2. Tempe	rature of aircraft surface	e 0° or colder (can be caused	l by aerodyn	amic cooling)	
Clear Icing		Rime Icing		Mixed Icing (mix of clear and rime)	
📅 Clear		TT Rough		‴ Hard	
👕 Smoot	h	Coarse		Rough Conglomerate	
📉 📶 Glossy	Glossy				
👕 Warme	er temperatures	🞹 Colder temperatur	es	Variation in temperatures	
📶 High lio	quid content	Lower liquid conte	nt	Variation in liquid contents	
Larger	droplets	Small droplets		Variation in droplet size	
🛛 🖤 Higher	aircraft speeds	Lower aircraft spee	eds		
Icing Classificat	ion		1		
Intensity	Rate of Accumulation		Airframe Effects		
Trace 📋	No significant accumulation		Usually not hazardous even without anti/deice		
Light 📊	Significant accumulations for prolonged flight		Occasional use of de/anti ice removes/prevents		
–			accumulation		
Moderate 🔟	Significant accumulation	on for shorter flight	Even short encounters can be hazardous and use		
			of de/anti ice (possibly diversion) is necessary		
Severe 🙀	Rapid, dangerous accui	mulations	De/anti ice equipment fails to remove ice.		
			Diversion is	s required	

Flight Instruments					
	Pitot Static System				
Airspeed Indicator	Altimeter	Vertical Speed Indicator			
Info from both pitot tube and static	Info from static port	Info from static port			
port					
Measured difference between ram	Aneroid barometer that measures				
pressure from pitot head and	pressure of ambient air and displays				
atmospheric pressure from static	it				
source.					
	Warmer than standard: True altitude				
	will be higher than indicated				
	Colder than standard: True altitude				
	will be lower than indicated				
	• Correct for error by 4%				
	height increase for every 10C				
	below standard				
	Max allowable error for IFR: 75 feet				
	from field elevation				

Required Reporting Points to ATC Under IFR 91.183

- 1. Compulsory reporting points
- 2. Unforcasted weather conditions
- 3. Information relating to the safety of flight
- 4. When vacating previously assigned altitude
- 5. When making a VFR on top altitude change
- 6. When unable to climb/descend at 500 ft/min
- 7. Missed approach

- 8. Change in average TAS when it changes by:
 - a. 5%
 - b. 10 Knots
- 9. Time/altitude upon reaching holding fix
- 10. When in controlled airspace, the loss of
 - a. VOR/TACAN
 - b. ADF
 - c. GPS Abnormalities
 - d. ILS Receiver

IFR Takeoff Minimums 91.175				
Part 91	1-2 Engine	>2 Engines		
None	1sm visibility	1/2sm visibility		

Approach Obstacle Clearance TERPS		
OCS: Obstacle Clearance Surface		
Imaginary line drawn from highest obstacle		ROC 1,000 feet initial
among approach path		
ROC: Required Obstacle Clearance		
Minimum vertical separation between the		
aircraft and the OCS (highest obstacle)		
Different separation requirements on different approach		
segments		
Segment	ROC	*May be level for non-precision approaches with an MDA or sloping for precision approaches with a glideslope
Initial Segment	1,000'	
Intermediate Segment	500'	
Final Segment	Non-Precision: 250'	
	Precision: 200'	

Holds and Hold Entries

What is a Hold?

A hold is a racetrack shape that consists of 2 parallel 1-minute segments and a 1 minute, 180° turn at the end of each segment to make up a racetrack shape. A hold is usually based off a VOR radial with the outbound leg being the radial you are holding on. For example, in the picture to the right, you would be holding on the 270° radial

Determining Hold Entry

To determine hold entry, look at your heading indicator and imagine the overlay to the left. Whatever quadrant would take you direct to the radial is the type of entry you would execute. For example, if you were told to hold on the 330° radial standard turns, a teardrop entry would be the proper entry. If you were told to hold on the 210° radial standard turns, you should execute a parallel hold entry. If turns were nonstandard, parallel and teardrop quadrants would be reversed and the overlay would read "TPD"

Standard Hold Entry Overlay

Direct

